【LOJ6569】仙人掌计数

Statement

带标号仙人掌计数问题.($n \le 131071$)

Solution

设仙人掌个数的生成函数为$C(x)$

  • 对于与根相邻的块, 还是仙人掌, 生成函数为$C(x)$

  • 包含根的环, 生成函数为$\sum_{i \ge 2}\frac{C(x)^i}{2}$

组合起来:

设$G(C(x)) = x\exp{\frac{2C(x)-C(x)^2}{2-2C(x)}}-C(x)$, 那么:

牛顿迭代:

Code

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
/************************************************
* Au: Hany01
* Prob: loj161
* Email: hany01dxx@gmail.com & hany01@foxmail.com
* Inst: Yali High School
************************************************/

#include <bits/stdc++.h>

using namespace std;

typedef long long LL;
typedef long double LD;
typedef pair<int, int> PII;
#define Rep(i, j) for (register int i = 0, i##_end_ = (j); i < i##_end_; ++ i)
#define For(i, j, k) for (register int i = (j), i##_end_ = (k); i <= i##_end_; ++ i)
#define Fordown(i, j, k) for (register int i = (j), i##_end_ = (k); i >= i##_end_; -- i)
#define Set(a, b) memset(a, b, sizeof(a))
#define Cpy(a, b) memcpy(a, b, sizeof(a))
#define X first
#define Y second
#define PB(a) push_back(a)
#define MP(a, b) make_pair(a, b)
#define SZ(a) ((int)(a).size())
#define ALL(a) a.begin(), a.end()
#define INF (0x3f3f3f3f)
#define INF1 (2139062143)
#define debug(...) fprintf(stderr, __VA_ARGS__)
#define y1 wozenmezhemecaia

template <typename T> inline bool chkmax(T &a, T b) {
return a < b ? a = b, 1 : 0;
}
template <typename T> inline bool chkmin(T &a, T b) {
return b < a ? a = b, 1 : 0;
}

template <typename T> inline T read() {
static T _, __;
static char c_;

for (_ = 0, __ = 1, c_ = getchar(); c_ < '0' || c_ > '9'; c_ = getchar())
if (c_ == '-')
__ = -1;

for (; c_ >= '0' && c_ <= '9'; c_ = getchar())
_ = (_ << 1) + (_ << 3) + (c_ ^ 48);

return _ * __;
}
//EOT


const int MAXN = 1 << 19, MOD = 998244353, g0 = 3;
int ig0;
int pw[MAXN], pw_[MAXN];
int fac[MAXN], ifac[MAXN];

inline int fpm(int a, int b = MOD - 2) {
register int ans = 1;

for (; b; b >>= 1, a = (LL)a * a % MOD)
if (b & 1)
ans = (LL)ans * a % MOD;

return ans;
}
inline int ad(int x, int y) {
return (x += y) >= MOD ? x - MOD : x;
}
inline void inc(int &x, int y) {
if ((x += y) >= MOD)
x -= MOD;
}
inline int times2(int x) {
return (x += x) >= MOD ? x - MOD : x;
}

int Init(int n) {
int pt, N;

for (pt = 0, N = 1; N <= n; N <<= 1, ++ pt);

ig0 = fpm(g0, MOD - 2);
For(i, 1, pt + 1)
pw[1 << i] = fpm(g0, (MOD - 1) / (1 << i)),
pw_[1 << i] = fpm(ig0, (MOD - 1) / (1 << i));
fac[0] = 1;
For(i, 1, N - 1) fac[i] = (LL)fac[i - 1] * i % MOD;
ifac[N - 1] = fpm(fac[N - 1]);
Fordown(i, N - 1, 1) ifac[i - 1] = (LL)ifac[i] * i % MOD;
return N;
}

inline void NTT(int *a, int n, int ty) {
static int rev[MAXN];
static int W[MAXN];
register int pt = __builtin_ctz(n);
Rep(i, n)

if (i < (rev[i] = ((rev[i >> 1] >> 1) | ((i & 1) << (pt - 1)))))
swap(a[i], a[rev[i]]);

for (register int i = 2, i2 = 1; i <= n; i2 = i, i <<= 1) {
W[0] = 1, W[1] = ty > 0 ? pw[i] : pw_[i];
For(j, 2, i2 - 1) W[j] = (LL)W[j - 1] * W[1] % MOD;

for (register int j = 0; j < n; j += i) {
Rep(k, i2) {
register int x = a[j + k], y = (LL)a[j + k + i2] * W[k] % MOD;
a[j + k] = ad(x, y), a[j + k + i2] = ad(x, MOD - y);
}
}
}

if (ty < 1) {
register int inv = fpm(n);
Rep(i, n) a[i] = (LL)a[i] * inv % MOD;
}
}

inline void Mult(int *f, int *g, int n, int *h) {
static int f_[MAXN], g_[MAXN];
Rep(i, n) f_[i] = f[i], g_[i] = g[i];
For(i, n, n * 2 - 1) f_[i] = g_[i] = 0;
NTT(f_, n << 1, 1), NTT(g_, n << 1, 1);
Rep(i, n << 1) h[i] = (LL)f_[i] * g_[i] % MOD;
NTT(h, n << 1, -1);
}

inline void Mult(int *f1, int *f2, int *f3, int n, int *h) {
static int f1_[MAXN], f2_[MAXN], f3_[MAXN];
Rep(i, n) f1_[i] = f1[i], f2_[i] = f2[i], f3_[i] = f3[i];
For(i, n, n * 2 - 1) f1_[i] = f2_[i] = f3_[i] = 0;
NTT(f1_, n << 1, 1), NTT(f2_, n << 1, 1), NTT(f3_, n << 1, 1);
Rep(i, n << 1) h[i] = (LL)f1_[i] * f2_[i] % MOD * f3_[i] % MOD;
NTT(h, n << 1, -1);
}

namespace Inv {
static int f[MAXN];
inline void Inv_(int *g, int n) {
static int h[MAXN];

if (n == 1) {
g[0] = fpm(f[0]);
return;
}

Inv_(g, n >> 1);
Mult(g, g, f, n, h);
Rep(i, n) g[i] = ad(ad(g[i], g[i]), MOD - h[i]);
}
inline void Inv(int *A, int n, int *ans) {
Rep(i, n) f[i] = A[i], ans[i] = 0;
Inv_(ans, n);
}
}

inline void Int(int *f, int n, int *g) {
Fordown(i, n - 1, 1) g[i] = (LL)f[i - 1] * fpm(i) % MOD;
g[0] = 0;
}
inline void Der(int *f, int n, int *g) {
For(i, 1, n - 1) g[i - 1] = (LL)f[i] * i % MOD;
g[n - 1] = 0;
}

inline void Ln(int *f, int n, int *g) {
static int h[MAXN];
Der(f, n, h), Inv:: Inv(f, n, g);
Mult(h, g, n, g), Int(g, n, g);
}

namespace Exp {
static int G[MAXN];
inline void Exp_(int *F, int n) {
static int H[MAXN];

if (n == 1) {
F[0] = 1;
return;
}

Exp_(F, n >> 1);
Ln(F, n, H);
Rep(i, n) H[i] = ad(G[i], MOD - H[i]);
H[0] = ad(H[0], 1);
Mult(H, F, n, F);
}
inline void Exp(int *g, int n, int *ans) {
Rep(i, n) G[i] = g[i], ans[i] = 0;
Exp_(ans, n);
}
}

inline void Pow(int *f, int n, int k, int *g) {
static int h[MAXN];
Ln(f, n, h);
Rep(i, n) h[i] = (LL)h[i] * k % MOD;
Exp:: Exp(h, n, g);
}

namespace Sqrt {
static int A[MAXN], B[MAXN], a[MAXN];
void Sqrt_(int *b, int n) {
if (n == 1) {
b[0] = sqrt(a[0]);
return;
}

Sqrt_(b, n >> 1);
Rep(i, n) A[i] = b[i];
Mult(A, A, n, A);
Rep(i, n) A[i] = ad(A[i], a[i]), B[i] = ad(b[i], b[i]);
Inv:: Inv(B, n, B);
Mult(A, B, n, b);
}
void Sqrt(int *x, int *y, int n) {
Rep(i, n) a[i] = x[i], y[i] = 0;
Sqrt_(y, n);
}
}

void Newton(int *C, int n) {
if (n == 2) {
C[1] = 1;
return;
}

Newton(C, n >> 1);
static int F1[MAXN], F2[MAXN], F[MAXN], G[MAXN];
Mult(C, C, n, F1);
Rep(i, n) F1[i] = ad(times2(C[i]), MOD - F1[i]);
Rep(i, n) F2[i] = ad(0, MOD - times2(C[i]));
inc(F2[0], 2);
Inv:: Inv(F2, n, F2);
Mult(F1, F2, n, F1);
Exp:: Exp(F1, n, F1);
Fordown(i, n - 1, 1) F1[i] = F1[i - 1];
F1[0] = 0;
Rep(i, n) F[i] = ad(times2(F1[i]), MOD - times2(C[i]));
Rep(i, n) F2[i] = C[i];
inc(F2[0], MOD - 1);
Mult(F2, F2, n, F2);
Inv:: Inv(F2, n, F2);
inc(F2[0], 1);
Mult(F1, F2, n, G);
inc(G[0], MOD - 2);
Inv:: Inv(G, n, G);
Mult(F, G, n, F);
Rep(i, n) C[i] = ad(C[i], MOD - F[i]);
}

int main() {
#ifdef hany01
freopen("loj161.in", "r", stdin);
freopen("loj161.out", "w", stdout);
#endif

static int C[MAXN];
int N = Init(131071);

Newton(C, N);

for (int Q = read<int>(), x; Q --;) {
x = read<int>();
printf("%lld\n", (LL)C[x] * fac[x - 1] % MOD);
}

return 0;
}